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Radiative Decay of Vector Meson V ® P g in the
Spinor Strong Interaction Theory

F. C. Hoh1

Received May 28, 1999

The spinor strong interaction theory recently developed is applied to the radiative
decay of a two-quark vector meson into pseudoscalar meson V ® P g . Expression
of the decay rate G is derived in this first-principle theory without assumption
and free parameter. The ratio G (D*0 ® D0 g )/ G (D*+ ® D+ g ) is correctly predicted.
The orders of magnitude of the radiative decay rates of B*, D*, K*, and r
estimated from this expression are consistent with data. Very fast mesons have
a smaller size then do mesons at rest, similar to Lorentz contraction in
laboratory space.

1. INTRODUCTION

In the current literature, low-energy mesonic theories are based upon

phenomenological Lagrangians [1, 2]. QCD-oriented, nonrenormalizable, chi-

ral perturbation theories are applied to light mesons [2, 3]. When the meson

contains a very heavy quark, a new spin-flavor symmetry emerges from QCD
[4, 5] and can be incorporated to apply to heavy mesons [6, 7]. In spite of

the vast literature on these subjects, specific and systematic predictions on

the radiative decay of vector mesons V ® P g are scanty [8].

This may be due to the phenomenological nature of these theories in

which the meson fields are local. Since the meson has finite size, much physics

is lost by neglecting its extension and compensating for it by introducing
parameters. A comparison of these Lagrangians to the nonlocal Lagrangian

of the spinor strong interaction theory [9; hereafter denoted by I] has been

given in the introduction and Section 8 of the accompanying paper [10;

hereafter denoted by III] and will not be repeated here.
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Reference I is concerned with stationary phenomena of mesons at rest.

It has been extended to treat weak decay of pseudoscalar mesons [11; hereafter

denoted by II].
The purpose of this paper is to modify and extend II to apply to the

radiative decay of two-quark vector mesons V ® P g . In the process, paper I

is also extended to apply approximately to slowly moving heavy pseudoscalar

mesons. In Section 2, the required action integral is given and its first-order

part identified with the aid of expressions from earlier work reproduced in

Appendix A. The decay amplitude is then derived in Section 3. The decay
rate is derived in Section 4. It is further reduced to an order-of-magnitude

estimate of this rate by introducing the perturbed wave functions, arising from

the slow motion of heavy pseudoscalar-mesons, obtained from a dimensional

analysis in Appendix B. In this appendix, it is indicated on dimensional

grounds that the size of the meson decreases with increasing momentum,

similar to Lorentz contraction in laboratory space. The decay rate is applied
to the ratios of D* ® D g decays in Section 5. Order-of-magnitude estimates

of the decay rates for B*, D*, K*, and r are found to be consistent with

data. Comparison with earlier work is made.

2. ACTION FOR V ® P g DECAY

Appendix A gives the starting equations mostly collected from earlier

papers on this theory. Substituting (A6a), (A6b), (A7), and (A9) into (A4)

and making use of (A6c) and (A5b) leads to

SM 5 # d 4X d 4x
1

4 5 [( - bÇ a
I 1 i(1 2 a)qpA

bÇ a(X )) x eÇ
a][( - IIeÇ f 2 iaqrAeÇ f (X )) x f

bÇ ]

1 [( - bÇ a
II 2 iaqrA

bÇ a(X)) c eÇ
a][( - IeÇ f 1 i(1 2 a)qp AeÇ f(X )) c f

bÇ ]

1 2( F p(x) 2 M 2
m) c cÇ

d x d
cÇ 1 h.c. 6 (2.1)

which is similar to the action (II 2.4) for K ® m n and provides the present

starting point.

The equivalent of (II 4.1) is here

( - bÇ a
I x eÇ

a)( - IIeÇ f x f
bÇ ) 5 - bÇ a

I x eÇ
a - IIeÇ f x f

bÇ 2 x eÇ
a - abÇ

I - IIeÇ f x f
bÇ (2.2)

We substitute (2.2) and other terms of the same type into (2.1). Following

II Section 4, terms of the type of the last term in (2.2) together with the

F P 2 M 2
m term in (2.1) vanish since they form the terms in the zeroth-order
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meson equations (A1). The remaining terms in (2.1) are of type (i) consisting

of terms of the kind of the first term on the right of (2.2), type (ii) consisting

of terms linear in the q’ s, and terms quadratic in q. These type (ii) terms
represent the electromagnetic interaction and therefore are regarded as first-

order perturbations. Other ordering of the terms in (2.1) is entirely analogous

to that given by (II 2.6). Following the discussion below (II 4.4), the type

(ii) terms here likewise balance off the type (i) terms, which therefore are

also of first order. This is in agreement with the conventional S-matrix theory

mentioned at the end of II Section 4.

3. DECAY AMPLITUDE

Equations (I 6.7) and (I 6.8) show that the meson equations (A1) reduce

in the rest frame to two classes of solutions representing the pseudoscalar

and vector mesons, which will be denoted by the subscripts J 5 0 and

1, respectively.

With the help of (I 6. 1a), (I 6.3), and (I 6.5), the meson wave functions

are decomposed as follows:

c abÇ (xI, xII) 5 o
J

o -
K

bJ
-

K exp ë 2 iEJ
-

K X 0 1 i
-

K J

-
X

1 i v J
-

K x0 û ( d abÇ c J
-

K (
-

x ) 2
-

s abÇ -
c J

-
K (

-
x )) (3.1)

and a similar equation with c ® x . Here, EJK is the energy of the meson with

momentum KJ and v JK is the relative energy of the quarks. The expansion (3.1)

holds only for free mesons for which the confining potential F 8PJr(
-
x), prior to its

specialization to F 8PJr(r) of (III 2.1c), vanishes so that the meson wave equation

(B1) is linear (see III Section 2.1). For the decaying meson, let

bJ
-

K ® aJ
-

K 1 a
(1)
J

-
K (X 0) (3.2)

by analogy to II (3.1). Here aJK is the annihilation operator for a meson with

J and K, and a
(1)
JK(X 0) is the corresponding first-order decay amplitude and

varies slowly with the time X 0.

The photon of the decay can be represented as

-
A (X ) 5 o -

K r

(2Er V ) 2 1/2 o
T

-
e T aT (

-
K r) exp( 2 iEr X

0 1 i
-

K r

-
X ) 1 c.c. (3.3)

where V is a large normalization volume, (Er , Kr) is the four-momentum of
the photon, eT is the unit polarization vector in the transverse directions T
5 1 and 2 perpendicular to Kr , and aT(Kr) is the corresponding annihilation

operator. The time component A0 has been put to zero.

As in (II 4.3b) and (II 4.3c), let
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) i & 5 ) V(
-

K 1 5 0) & , ^ f | 5 ^ P(
-

K 0), g T(
-

K r) )
a10 ) i & 5 ) 0 & , a*o

-
K oa*T (

-
K r)0 & 5 ) f & (3.4)

where ) i & and ^ f ) denote the initial and final states, respectively. The last

relation in (3.4) holds because the sum of four-momenta of P and g is the

same as that of V(K1 5 0) in X space, irrespective of their behavior in the

relative x space.
Collecting all type (i) terms in (2.1), placing them between ^ f ) and ) i & ,

and making use of (3.1), (3.1) with c ® x , (3.2), (3.4), and (A3b) leads to

^ f | # d 4X d 4x
1

4
{ - bÇ a

I x eÇ
a - IIeÇ f x

f
bÇ 1 - bÇ a

II c eÇ
a - IeÇ f c

f
bÇ 1 - IIfÇ e x fÇ

b - baÇ
I x e

aÇ 1 - IefÇ c fÇ
b - baÇ

II c e
aÇ } ) i &

5 2 i
1

2
E10Sfi # d 3 -

X # dx0 d 3 -
x ) -

c 10(
-

x ) ) 2 (3.5a)

Sft 5 ^ f ) a(1)
10 *(X 0 ® ` )a10 ) i & (3.5b)

Here, integration over X 0 has been carried out with the boundary condition

a(1)
10 (X 0 ® 2 ` ) 5 0. Also,

c 10 5 x 10 5 0,
-

c 10 5
-

x 10 5 rÃc 1, rÃ5
-

x /r, r 5 ) -
x ) (3.6)

for V at rest according to (I 6.8) and (I 8.2) ff.

The sum of the type (ii) terms in (2.1) is

i
1

8 # d 4X d 4x H qp[( - bÇ a
II c eÇ

a)AeÇ f(X) c f
bÇ 1 AbÇ a(X) x eÇ

a - IIeÇ f x f
bÇ ]

2 qr[( - bÇ a
I x eÇ

a)AeÇ f(X) x f
bÇ 1 AbÇ a(X) c eÇ

a - IeÇ f c
f
bÇ ] 1 h.c. J (3.7)

where a 5 1/2 has been chosen in (2.1), in agreement with the consideration

preceding (4.1) below. Sandwiching (3.7) between ^ f ) and ) i & and making

use of (A3b), (3.1)±(3.4), and (3.6) leads to

1

4
(2Er V )

2 1/2 # d 3 -
X exp( 2 i(

-
K 1

-
K r)

-
X )2 p d (E0

-
K 1 Er 2 E10)

3 # dx0 d 3 -
x

1

2

3 c 1 H qp[(
-

e T rÃ)(E0
-

K c *0
-

K 2 E10 x *0
-

K 2
-

K
-

c *0
-

K ) 1 (
-

e T 3 rÃ)(
-

K 3
-

c *0
-

K ) 1 iIp]

2 qr[(
-
e T rÃ)(E0

-
K x *0

-
K 2 E10 c *0

-
K 2

-
K

-
x *0

-
K ) 1 (

-
e T 3 rÃ)(

-
K 3

-
x *0

-
K ) 1 iIr] J

1 h.c. (3.8)
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Ip 5 (
-

e T 3 rÃ)(
-

K x *0
-

K 2 E0
-

K

-
x *0

-
K 2 2

-
- 3

-
x *0

-
K ) 1 (

-
e T rÃ)(

-
-

-
x *0

-
K )

1 E10rÃ(
-

e T 3
-

c *0
-

K ) 1 2(
-

e T

-
c *0

-
K )( - c 1/ - r)/ c 1

IT 5 (
-

e T 3 rÃ)(
-

K c *0
-

K 2 E0
-

K

-
c *0

-
K 1 2

-
- 3

-
c *0

-
K ) 2 (

-
e T rÃ)(

-
-

-
c *0

-
K )

1 E10rÃ(
-

e T 3
-

x *0
-

K ) 2 2(
-

e T

-
x *0

-
K )( - c 1/ - r)/ c 1 (3.9)

where K [ K0 for brevity. The decay amplitude Sfi is obtained by equating

(3.8) to the negative of (3.5a).

4. DECAY RATE FORMULA AND ESTIMATES

In the rest frame and in the absence of orbital excitation, the pseudoscalar

meson wave function is a singlet and depends only upon the quark±antiquark

distance r. For mesons in motion, however, the wave functions satisfy the
full (A1) and (A2), which couple the singlet and triplet parts, and spherical

symmetry in x for the rest frame case is lost. In motion, a pseudoscalar meson

is thus no longer represented only by a singlet, the time component of a four-

vector, but by a four-vector in X and x (see Section 3.3 of III). Note that x
is not an observable since quarks are not seen, but observable results character-

izing the mesons depend upon it. Therefore, x may take on the role of a
ª hidden variableº mentioned in the literature.

Mesons in motion are considered in Appendix B and described by (B1),

which has not been solved generally. Therefore, (3.8) and (3.9) cannot be

evaluated for arbitrary K. For nonrelativistic pseudoscalar mesons, however,

their wave functions can be expanded in powers of K or e 0 of (B5). The

perturbed wave functions are determined by (B8) to order e 0 and by (B9) ff.
to order e 2

0.

4.1. Decay Rate Formula for Slow Mesons and Estimate

The treatment that follows will therefore be limited to slowly moving

pseudoscalar mesons according to (B5). Equation (B6) is substituted into
(3.8) and (3.9) and only terms to order e 2

0 are kept. Here,

c *0
-

K (
-

x ) ® c 00(r) 1 c 02(
-

x ),
-

c *0
-

K ®
-

c 01(
-

x ), c ® x (4.1)

Equation (B8) shows that
-

c 01 and
-

x 01 are real. Therefore, (3.9) is real and

the iIp and iIr terms in (3.8) drop out. Since E0K Þ E10, (B1d) requires that

v 0K Þ v 10 in (3.8) observing (3.1). This will lead to an inconsistency in the
relative time x 0 dependence of (3.8) relative to that of (3.5). Therefore, v JK

5 0 is set, which is consistent with (B9) ff. and (B3). Equation (B1d) now

becomes a 5 1/2, which has been used in (3.7). With (B7), (3.8) to order

e 2
0 is equated to the negative of (3.5a) and the result is put in the form
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Sfi 5 i p (2Er V ) 2 1/2 E 2 1
10 d (E0

-
K 1 Er 2 E10) 1 # d 3 -

x c 2
1(r) 2

2 1

3 5
# d 3 -

x c 1(r)(
-

e T rÃ)[qp(E0
-

K c 00(r) 2 E10 x 00(r)) 1 qr(E10 c 00(r) 2 E0
-

K x 00(r))] 1

# d 3 -
x c 1(r)

1±2 3
(qp 1 qr)[(

-
e T 3 rÃ)(

-
K 3 (

-
c 01 2

-
x 01))

1 (
-

e TrÃ)( 2
-

K (
-

c 01 2
-

x 01)) 1 (E0
-

K 1 E10)( c 02 2 x 02)]

1 (qp 2 qr)[
-

e T 3 rÃ)(
-

K 3 (
-

c 01 1
-

x 01))

1 (
-

e TrÃ)( 2
-

K (
-

c 01 1
-

x 01)) 1 (E0
-

K 2 E10)( c 02 1 x 02)] 4 6
(4.2)

where Kr 5 2 K has been set.

The first integral is of order e 0 and vanishes when integration over the
angles is carried out. The decay rate is given by (II 5.4) with (II 6.4). With

(4.2), it reads

G 2(V ® P g ) 5 o
final states

) Sfl ) 2/Td

5 2
1

32 p 2E 2
10 # d 3 -

K d (E0
-

k 1 Er 2 E10)
K4

ErE
2
00

3 [(qp 1 qr)
2Q2

1 1 1 (qp 2 qr)
2Q2

1 2 ] (4.3)

QI 6 5 F # d 3 -
x c 2

1(r) G 2 1

# d 3 -
x c (r)

E00

2K 2

3 [(
-

e T 3 rÃ)(
-

K 3 (
-

c 01 7
-

x 01)) 1 (
-

e T rÃ)( 2
-

K (
-

c 01 7
-

x 01)

1 (E10 6 E0
-

k )( c 02 7 x 02))] (4.4)

which holds to order e 2
0. Here, Td denotes a long time period during which

all such decays occur. The cross product (qp 1 qr) * (qp 2 qr) term has been

dropped because the physical results must remain unchanged if p % r, i.e.,

if quark I (II) has flavor r ( p) instead of p (r).
The decay rate (4.3), however, cannot be evaluated because the perturbed

wave functions in (4.4) have not been computed according to Appendix B.5.
In the following, an estimate of (4.3) based upon the dimensional analysis

approximation in Appendix B.5 will be given in the limit (B11) of heavy

pseudoscalar mesons. Inserting (B14)±(B17) into (4.4) leads to

QI 1 5 F # d 3 -
x c 2

I (r) G 2 1

[ 2 1 2 4E00(E0
-

K 1 E10)/d
2
m]Ib (4.5a)

Ib 5 # d 3 -
x c 1(r) c 00(r)(

-
e 8T rÃ) (4.5b)
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QI 2 5 0 (4.5c)

where
-

e 8T 5 (XÃ, YÃ, 0) ’
-

K

and X and Y are laboratory coordinates. Equation (4.5b) again vanishes after
integration over the angles. The decay rate (4.3) therefore also vanishes to

order e 2
0. This is in part due to the approximate nature of the dimensional

analysis, which removes the angular dependence in (B14) and (B17) (see

end of Appendix B.5). Such dependence can appear in higher orders of e 0.

Due to (B8a), the e 3
0 terms do not contribute to (4.4), but e 4

0 in (B6) will. In

some of these terms, x, or y is expected to be present at least linearly due
to the cross terms in (B1). With such a term in (4.4), integral over the angles

will no longer vanish. Let T 5 1 represent eT in the X direction; then

# d 3 -
x (

-
e T rÃ)xÃ5

1

3 # d 3 -
x (4.6)

This term corresponds to the dipole transition picture of Section 4.3.

The dimensional analysis approximation of Appendix B.5 has not been

carried out to order e 4
0. To obtain an estimate to this order, the e 2

0 order result

(4.5), modified by including (4.6), will simply be multiplied by a factor e 2

of order e 2
0 so that

Ib ® Ib2 5
e 2

3 # d 3 -
x c 1(r) c 00(r) (4.7)

Since both
-

c 01 of order e 0 and c 02 of order e 2
0 enter (4.4), an estimate

combining both types of terms is

e 2 5 Z c 01

c 00 Z ! Z c 02

c 00 Z (4.8)

where (B5), (B14), and (B17) have been employed.

The integrals in (4.5a) and (4.7) can be evaluated using the free meson

wave functions (III 2.2) and (III 2.3). One finds

# d 3 -
x c 1(r) c 00(r) Y # d 3 -

x c 2
1(r) 5 ! 3/2 32/81 (4.9a)

The photon energy Er 5 K0 and the pseudoscalar meson energy E0K are

determined by the d -function in (4.3),

K0 5 E10[1 2 (E00 /E10)
2]/2, E0

-
K 5 E10 2 K0 (4.9b)

Inserting (4.5), (4.7), and (4.9) into (4.3) and making use of (B10) leads
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to an order-of-magnitude estimate of the decay rate for slow pseudoscalar

mesons to order e 4
0,

G 4(V ® P g ) 5 e 2 G 2(V ® P g ) (4.10a)

G 2 (V ® P g ) 5
128

6561 p
(qp 1 qr)

2 K 5
0

E 2
00E

2
0

-
K 1 1 2

E00

E10 2
3

3 [(1 1 4E00(E10 1 E0
-

K ))/d 2
m]2 (4.10b)

for e 0
¿ 1 and dm

¿ E00

where dm 5 0.864 Gev according to (III 2.5a).

4.2. Decay Rate Estimate for Fast Mesons

In Table I, the p and K mesons are relativistic in the r and K* decays.
Therefore, the e 0

¿ 1 results in Section 4.1 and Appendix B.5 no longer hold.

By analogy to the reverse of (4.1), setting

c 02 ® c 0
-

K (
-

x ) 2 c 00(r) ® c 0
-

K (
-

x ),
(4.11)-

c 01 ®
-

c 0
-

K (
-

x ), c ® x

in (4.2)±(4.4), these will hold for all e 0 values. Here, the c 00(r) term vanishes

upon integration over the angles in (4.4). The momentum K0 for p and K is

still low compared to dm , so that the extremely relativistic case of Appendix

B.2 does not apply. The scale of the meson wave functions is not 1/K0, as

in (B4b), but is still of the order of 2/dm , as in c 00(r) or (III 2.2a). The
following order-of-magnitude estimate of the decay rate will be made.

For large K0, the
-

- (K 3
-

x ) type of terms in (B1) cannot be dropped

so that the simple relations (B12a) and (B13a) no longer hold. Therfore,

unlike (4.5c), Q1 2 does not vanish.

The same reasoning leading to (4.6) is similarly assumed, but is now

associated with large e 0 values. In this case, the eT 3 rÃterm in (4.4), using
(4.11), vanishes for the x and y components of rÃbecause eT ’ K. For the z
component of rÃ, integration over the angles still yields zero or is strongly

suppressed. Therefore, this eT 3 rÃterm is dropped. This term also did not

contribute to (4.5) and is consistent with the physical picture of Section

4.3 below.

The eT rÃterm in (4.4) together with (4.11) is now approximated by
(4.5), including the modification implied in (4.6). Note that this extension

of the e 0
¿ 1 result to e 0

À 1 cases is adopted for lack of a better estimate

and is obviously very coarse. The order-of-magnitude estimate of the decay

rate is
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G 0(V ® P g ) 5 F 1 1 1 qp 2 qr Q81 2

qp 1 qr Q 81 1 2
2 G G 2(V ® P g ) (4.12a)

Q81 1 5 Q1 1 Ib2 / e 2Ib (4.12b)

0 , ) Q81 2 ) # ) Q1 1 ) for e 0 À 1 and p in Table I (4.12c)

0 # ) Q81 1 ) , ) Q1 1 ) for e 0 # 1 and K in Table I (4.12d)

The last relation is indicated by (4.5c), and (4.12c) is implied by the general

form of (4.4) and (4.11), in which the ª small componentsº
-

c 0K and
-

x 0K

become nearly as large as the ª large componentsº c 0K and x 0K for pseudosca-

lar mesons with large momenta.

4.3. Physical Picture

Consider as an example the D*0 decay in Fig. 1. The radii of the

maximum and the average meson wave function amplitudes are obtained

from the nonrelativistic free meson wave functions (III 2.2). The transition
has a dominant electric dipole nature, in adition to the spin-flip or magnetic

dipole transition considered conventionally [12]. A simple spin flip will not

transform D* to D, which have different sizes.

In this picture, the direction e t of the vector potential is parallel to the

current j or to rÃ. This is reflected in that only the eTrÃterm, but not the eT 3
rÃterm, enters (4.5), and hence the decay rates (4.10) and (4.12).

5. APPLICATION AND COMPARISON TO EARLIER WORK

5.1. Application

Table I shows the V ® P g cases considered.

Consider first the D* decay, (qp 1 qr)
2 5 4 p /137 times 16/9 and 1/9

for D*0 and D*+, respectively. Further, QI 1 of (4.4) is almost the same for
both decays, as is indicated by (4.5a). With the masses from ref. 13, (4.3)

and (4.5c) lead to

G 2(D
*0 ® D0 g )/ G 2 (D*+ ® D+ g ) 5 16.96 ’

16

9

9

1
(5.1)

These may be compared to the data [13]

G (D*0 ® D0 g )

G (D*0 ® D0 p 0)

G (D*+ ® D+ p 0)

G (D*+ ® D+ g )
5

38.1%

61.9%

30.6%

1.1 6 2.1
0.7%

5 17.12 (5.2)

In Table II of III, G (D*0 ® D0 p 0)/ G (D*+ ® D+ p 0) has been estimated to be
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Fig. 1. Illustration of D*0 ® D0 g . Here c 1max and c 1av are the maximum and average amplitudes,

respectively, of the vector meson wave function
-

c 10; c 00max and c 00av are the maximum and

average amplitudes, respectively, of the pseudoscalar meson wave functions. The sizes are

given by (III 2.6) and (III 2.5a). The much greater radius of the vector meson leads to a much

greater potential energy 2 dm /r of (III 2.1b) than does the final-state pseudoscalar meson. The

vector meson is therefore unstable and tends to reduce its potential energy, which is achieved

by diminishing its size. Therefore, the quarks c and uÅ move along the dashed line inward to

a distance of the order of the diameter of a pseudoscalar meson. Similarly, the vector meson

wave function peaking on the dashed circle collapses into the origin, where the pseudoscalar

meson wave function has its maximum. One of the quarks flips its spin to convert D*0 to D0

and gives rise to the spin of the photon. The quark movements along the spin direction of the

D*0 give rise to a current j which gives off a photon with momentum Kr. The resulting D0

acquires a momentum 2 Kr.

1.16. Inserting this value into (5.2) leads to G (D*0 ® D0 g )/ G (D*+ ® (D+ g )

5 19.9, which is about 17% greater than the prediction of (5.1). However,
there is a very large error margin of the branching ratio 1.1 6 2.1

0.7% in (5.2).

Agreement with (5.1) is restored if 1.1% ® 1.29% in (5.2), which is well

within the error limits.

Note that (5.1) relies on the approximations (B5) and (B11), which are
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Table I. Some Data and Order-of-Magnitude Estimates of the Decay Rate G for Vector

Mesons V Decaying Radiatively into Pseudoscalar Mesons Pa

V B*0 B* 1 D*0 D* 1 K*0 K* 1 r 0 r +

P B0 B+ D0 D+ K0 K+ p 0 p +

e 0 5 K0/E00 0.0124 ¿ 1 0.073 ¿ 1 0.62 # 1 2.7 À 1

G (keV) 1.9 3 10 2 8 0.5 3 10 2 8 2.8 3 10 2 3 0.17 3 10 2 3 53.5 $ 14.5 (732b) ( À 70)

, 145 ( # 700)

Equation (4.10) (4.12a,b,d) (4.12a,b,c)

Data (keV) Dominant , 800 , 1.44 116 50.3 119 67.8

a e 0 is the ratio of the momentum to mass for P. The very large G values for r can be due to

the extrapolation of the e 0
¿ 1, dm

¿ E00 estimate to e 0 À 1, dm À E00 for r and are

indicated by the parentheses.
b Average for uÅ u and dd contributions (see note a in Table 4 of ref. 12).

well and relatively well, respectively, satisfied for D. It does not make use
of the dimensional analysis approximation (4.5a) itself and is therefore a

relatively accurate prediction.

This is in contrast to the order-of-magnitude estimates of the decay rates

in Table I, which are obtained from (4.10) based on such an approximation

and from (4.12) based upon a still coarser approximation. The estimated D*
and B* decay rates are much smaller than the observed upper limits. An

experimental determination of these rates may therefore provide a clear test

of the spinor strong interaction theory.

For K*, the experimental ratio G (K*0 ® K0 g )/ G (K*+ ® K+ g ) 5 2.31

lies between the estimated ones, i.e., 3.7 $ 2.31 . 0.37. The upper limit 3.7

is obtained if QI 2 5 0, so that the qp 2 qr term in (4.3) does not contribute.
Thus, the qp 2 qr term does seem to contribute and (4.5c) no longer holds.

This may be consistent with the fact that e 0
¿ 1 underlying (4.5) is violated

by e 0 5 0.62 in Table I. This is in contrast to the D* decay, for which (5.1)

is nearly the ratio of the (qp 1 qr)
2 factor or 16; the qp 2 qr term drops out

in (4.3) due to (4.5c).

The estimated r decay rates are too large and may be due to the extrapola-
tion and modification of the e 0

¿ 1 and dm
¿ E00 result of (4.5) to e 0

À 1

and dm
À E00 for r decay. The experimental ratio G ( r 0 ® p 0 g )/ G ( r + ® p + g )

5 1.76 again lies between the estimated ones, i.e., 10.5 . 1.76 $ 1.05. The

upper limit 10.5 is obtained with QI 2 5 0 of (4.5c), so that the qp 2 qr term

in (4.3) does not contribute. However, the requirements underlying (4.5c)

are violated in a still higher degree so that ) QI 2 /QI 1 ) is still larger and
approaches unity. This is represented by the lower limit 1.05, which is closer

to the data.

In the sequence of D*, K*, and r decays, the pseudoscalar mesons get

more relativistic, the Q2
I 2 term goes from 0 to nearly Q2

I 1 , and the (qp 1 qr)
2
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dependence of the D* decay rate is transformed to a (qp 1 qr)
2 1 (qp 2 qr)

2

5 2(q2
p 1 q2

r) dependence for r .

5.2. Comparison to Earlier Work

The comparison in Section 8.3 of III made for the sister process V ®
PP holds here as well. In Table 2 of ref. 8 radiative decay rates of light

mesons were obtained in the chiral limit and agree with data rather well.

Nevertheless, the chiral Lagrangian used contains a large number of terms
and a number of parameters have to be fixed by other data. Corrections due

to departure from chirality have not been considered. To account for decays

of heavy mesons, heavy quark symmetry [4, 5] has to be called upon and

this gives rise to additional complications [6]. Further, Lagrangians of this

type consist of local meson fields and cannot account for confinement, the

U(1) problem, the absence of Higgs bosons, etc.
These limitations are removed in the nonlocal Lagrangian in (2.1) of

the spinor strong interaction theory [14, 11]. The decay rate (4.3) with (4.4),

(4.11) has been derived from the Lorentz- and gauge-invariant action (2.1)

without any assumption and without any free parameter to be fixed by other

data. However, (B1) and (B2) determining the zeroth-order wave functions

for mesons in motion are too complicated to solve. Approximations and
assumptions have been introduced to estimate these wave functions needed

in the decay rate expression. In spite of these gross approximations, the

estimated G in Table I do not contradict and are in order-of-magnitude agree-

ment with data.

APPENDIX A. EQUATIONS FROM EARLIER WORK

The basic meson equations together with related transformations are

given by (5.4), (5.5), (4.12), (6.2), and (A2) of I:

- abÇ
I - IIeÇ f x f

bÇ (xI, xII) j p
r(zI, zII) 5 ( F p(xI, xII) 2 M 2

m) c a
eÇ (xI, xII) j p

r(zI, zII)

- IcÇ b - deÇ
II c b

eÇ (xI, xII) j p
r(zI, zII) 5 ( F p(xI, xII) 2 M 2

m) x d
cÇ (xI, xII) j p

r (zI, zII) (A1)

MIMII F p(xI, xII) 5 1±2 Re( c a
bÇ (xII, xI) x bÇ

a(xII, xI)) (A2)

x m 5 x
m
II 2 x

m
I , X m 5 (1 2 a)x

m
I 2 ax

m
II (A3a)

- abÇ
I 5 (1 2 a)( 2 d abÇ - X

0 2
-

s abÇ -
- -

X ) 1 d abÇ - 0 1
-

s abÇ -
-

- IIeÇ f 5 a( 2 d eÇ f - X
0 1

-
s eÇ f

-
- -

X ) 2 d eÇ f - 0 1
-

s eÇ f

-
-

- 0 5 - / - x0,
-

- 5 - / -
-

x (A3b)

Here, xI and xII are the quark coordinates, zI and zII are the internal quark
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coordinates, x is the relative coordinate of the quarks, and X is the laboratory

coordinate of the meson with m 5 0, 1, 2, 3. x and c are meson wave

functions each consisting of a four-vector in the form of (I 6.11) and (I 8.1b).
j p

r is the internal function for the meson characterizing its internal properties

via its flavors p and r. F P is the interquark potential, which depends only

upon x here. Mm is the average mass of the both quarks. Equation (A1) has

been converted into an action integral (3.1) of ref. 14:

SM 5 # d 4xI d 4xII LM (A4a)

LM 5 1±4 {( - bÇ a
I x eÇ

a)( - IIeÇ f x f
bÇ ) 1 ( - bÇ a

II c eÇ
a)( - IeÇ f c f

bÇ ) 1 h.c.}

1 1±2 ( F p(
-

x ) 2 M 2
m)( c cÇ

d x d
cÇ 1 h.c.) (A4b)

where x eÇ
a 5 ( x e

aÇ )*. The j ’ s have been removed by virtue of the orthonormal

condition (2.6) and (2.7) of ref. 16:

j r
p(zI, zII) j r

r(zI, zII) 5 1, j r
p 5 ( j r

r)* (A5a)

z
p
I zIr 5 z

p
IIzIIr 5 d R

r , z
p
I zIIr 5 0 (A5b)

U(1) gauge transformation of (A4) has been carried out and the associated

invariance shown in Section 4 of ref. 14. In the presence of internal coordi-

nates, this transformation is generalized to

- abÇ
I x f

bÇ 5 ((1 2 a) - abÇ
X 2 - abÇ ) x f

bÇ ® ((1 2 a)( - abÇ
X 1 iqI A

abÇ (X )) 2 - abÇ ) x f
bÇ (A6a)

- IIafÇ x f
bÇ 5 (a - XafÇ 1 - afÇ) x fÇ

b ® (a( - XafÇ 2 iqII AafÇ (X )) 1 - afÇ) x fÇ
b (A6b)

qI 5 o
n

q n (z
n
I - / - z n

I 2 zI n - / - zI n ), I ® II (A6c)

qI 5 q4 5 2e/3, qI 5 q3 5 q5 5 2 e/3 (A6d)

x f
bÇ ® x f

bÇ exp(iqI f q(X )), x fÇ
bÇ ® x fÇ

bÇ exp( 2 iqII f q(X ))

AabÇ (X ) ® AabÇ (X ) 2 - abÇ
X f q(X ) (A6e)

where (A3b) has been consulted. With (A6c), which is (2.8a) of ref. 16, the

meson wave functions are attached by the associated internal functions

x f
bÇ ® x f

bÇ j p
r(zI, zII), x fÇ

b ® x fÇ
b j r

p(zI, zII) (A7)

as in (A1). Equation (4.7) of ref. 16,

j p
r(zI, zII) 5 ! 1/2(zp

I zIIr 1 zp
IIzIr) (A8)

comes from (I 9.1a) and the symmetric quark hypothesis (I 9.2) and refers

to mesons at rest. In V ® P g here, V is at rest and P is in motion, but both
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contain the same quarks. Therefore, (I 9.2) cannot be applied unambiguously.

This ambiguity is removed if (A8) is replaced by

j p
r (zI, zII) 5 zp

I zIIr (or zp
IIzIr) (A9)

which is an eigenfunction of (A6c). For consistency, this replacement should
also be carried out for (4.7) of ref. 16. It then leads to qI 1 qII 5 e below (4.7)

of ref. 16 and the predicted vector meson magnetic moments there should

be halved.

APPENDIX B. GENERAL MESON WAVE FUNCTIONS AND
NONRELATIVISTIC APPROXIMATION

B.1. Meson Wave Equations in Vector Form

For an ansatz of type (3.1), (A1) has been put in vector form by means
of (A3) and becomes (I 6.4) and the accompanying sister equation. These,

including correction of some misprints there, are reproduced below:

[a(1 2 a)(E 2 1
-

K 2) 1 - 2
0 1 ¹ 2 1 i(1 2 2a)(E - 0 2

-
K

-
- )] x

1 [2 - 0

-
- 1 i(1 2 2a)(E

-
- 2

-
K - 0) 2 2a(1 2 a)E

-
K 1

-
K 3

-
- ]

-
s x

1 [a(1 2 a)(E 2 2
-

K 2) 1 - 2
0 2 ¹ 2

1 i(1 2 2a)(E - 0 1
-

K
-

- )]
-

s
-

x 1 E
-

s (
-

- 3
-

x )

1 [2
-

s
-

- 1 2 - 0 1 i(1 2 2a)(E 2
-

s
-

K )]
-

-
-

x

2 [i(1 2 2a)( - 0 1
-

s
-

- ) 1 2a(1 2 a)(E 2
-

s
-

K )]
-

K
-

x

1 (
-

- 1 - 0

-
s )(

-
K 3

-
x ) 5 ( F p 2 M 2

m)( c 2
-

s
-

c ) (B1a)

(B1a) with x % c , cross products change sign

E 5 EJ
-

K , x ,
-

x , c ,
-

c 5 x J
-

K ,
-

x J
-

K , c J
-

K ,
-

c J
-

K (B1b)
-

K 5
-

K J, F P 5 F PJ, ¹ 2 5
-

-
-

- (B1c)

a 5 1/2 1 v 0
-

K /E0
-

K (B1d)

In the rest frame, KJ 5 0 in (3.1), and in the absence of orbital excitation,

(B1) and (A2) reduce to simple radial equations (7.3), (7.4), (8.3), and (8.4)
of I. For the relative energy v JK 5 0 mentioned below (4.1) and (B9), (B1d)

yields a 5 1/2. Making use of F PJ (III 2.1b) with F 8PJn and em 5 0 according

to Sections 2 and 2.1 of III, (B1a) becomes

{ 2 1±4 (E 2 1
-

K 2) x 2 1±2 E
-

K
-

x } 1 [ ¹ 2 x 2
-

- (
-

K 3
-

x )]

5 (dm /r 2 F 0 2 M 2
m) c (B2a)
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{ 2 1±4 (E 2 2
-

K 2)
-

x 1 1±2
-

K (
-

K
-

x ) 1 1±2 E
-

K x }

1 [2
-

- (
-

-
-

x ) 2 ¹ 2 x 1 E(
-

- 3
-

x ) 1
-

K 3
-

- x ]

5 2 (dm /r 2 F 0 2 M 2
m)

-
c (B2b)

B.2. Extremely Relativistic Mesons

In the opposite limit, KJ 5 (0, 0, K ® ` ), the following dimensional

considerations are given. The K 2-order terms in the braces of (B2) yield
(I 6.12a).

v J
-

K 5 0, x 3 5 2 x , E
2
J

-
K 5 K 2 (B3)

Since the right sides of (B2) can be dropped, the brackets in (B2b) then
show that

) -
- ) ’ K (B4a)

so that these brackets are also of order K 2. This may alter the second relation

of (B3), but the third one is assumed to hold. Equation (B4a) implies that

x ,
-

x , c ,
-

c , ’ (finite power polynomial in
-

x ) * exp( 2 Kr) (B4b)

Their amplitudes are determined from the same normalization condition (III

3.7) and are thus of the order (III 2.3) with dm ® 2K.

Should solutions of this type exist, they imply a decrease of the size of

mesons at rest, r0 > 1 fm (III 2.6a), to the order of 1/K ¿ 2/dm at high

momenta. This reduction is in the relative space x and parallels the correspond-
ing Lorentz contraction in laboratory space X.

This phenomenon makes it possible for mesons to be used to probe the

hadronic structure of nucleons, similar to the use of electrons to probe their

electromagnetic structure. For this purpose, meson energies K À dm /2 5
0.432 GeV as well as the inverse of the nucleon size are needed.

In the intermediary region, 0 , K , ` , (B2) has not been solved.

B.3. Nonrelativistic Pseudoscalar Mesons

For pseudoscalar mesons moving nonrelativistically, such as D and B

in Table I, the slow-meson approximation

e 0 5 K0/E00 ¿ 1 (B5)

provides a small parameter and (B1) can be treated iteratively. Let

x 0
-

K 5 o
i

x 0i,
-

x 0
-

K 5 o
i

-
x 0i, x ® c , E0

-
K 5 o

i
E0i (B6)

where the subscript i denotes the ith order in e 0. For free mesons, F P is
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independent of the meson wave functions according to Section 2.1 of III. To

zeroth order, I Section 6 shows that

x 00 5 2 c 00,
-

x 00 5
-

c 00 5 0 (B7)

for pseudoscalar mesons at rest. To first order in e 0, (B1) reduces to

x 01 5 0, c 01 5 0, E01 5 0 (B8a)

(1±4 E 2
00 2 ¹ 2)

-
x 01 1 2

-
- (

-
-

-
x 01) 1 E00

-
- 3

-
x 01 1 (dm /r 2 F 0 2 M 2

m)
-

c 01

5 1±2 E00

-
K x 00 2

-
K 3

-
- x 00 (B8b)

(1±4 E 2
00 2 ¹ 2)

-
c 01 1 2

-
- (

-
-

-
c 01) 2 E00

-
- 3

-
c 01 1 (dm /r 2 F 0 2 M 2

m)
-

x 01

5 1±2 E00

-
K c 00 1

-
K 3

-
- c 00 (B8c)

It can be seen here that v 0K can at most be of order e 0, which is consistent

with (B3). To second order in e 0, the singlet part of (B1) reads

(1±4 E 2
00 1 ¹ 2) x 02 2 (dm /r 2 F 0 2 M 2

m) c 02

5 2 i2
v 0

-
K

E00

-
K

-
- x 00 2

-
- (

-
K 3

-
x 01) 2 (1±2 E00E02 1 1±4

-
K 2) x 00

2 1±2 E00

-
K

-
x 01 (B9a)

(1±4 E 2
00 1 ¹ 2) c 02 2 (dm /r 2 F 0 2 M 2

m) x 02

5 2 i2
v 0

-
K

E00

-
K

-
- c 00 1

-
- (

-
K 3

-
c 01) 2 (1±2 E00E02 1 1±4

-
K 2) c 00

2 1±2 E00

-
K

-
c 01 (B9b)

Again, v 0K can be of order e 0 or higher, in agreement with the first-order
result above. However, v 0K ’ e 0 will lead to complex second-order wave

functions and introduction of a new unknown. This is avoided if v 0K 5 0,

as is required by the discussion preceding (4.2). In this way, the triplet part

in (B1) to order e 2
0 will have no source and hence drop out.

B.4. Classical Energy-Momentum Relation

The classical relation

E
2
J

-
K 5 E 2

J0 1
-

K 2
J (B10)

holds in the KJ ® ` limit by (B3) and for KJ 5 0 by definition. To first

order in KJ or e 0, (B10) also holds according to (B8a) together with E11 5
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0, which can be verified in an analogous manner. To order e 2
0, (B10) has not

been established generally.

B.5. Perturbed Wave Functions from Dimensional Analyses for
Heavy Mesons

Even (B8) and (B9) are not simply solved because the spherical symme-

try present in the e 0 5 0 limit is broken by the motion K0 so that separation

of variables in the relative space x cannot be carried out. Therefore, (B8)

and (B9) will be treated by a dimensional analysis, which is further much

simplified for heavy mesons like D and B in Table I:

E00 À 2 ) -
- c 00 / - r ) / c 00 5 dm 5 0.864 GeV (B11)

The opposite of (B11) holds for the light mesons p and K in Table I, for

which, however, e 0 . 1, so that Appendix B.3 above no longer holds. Under
these conditions, (B8b), (B8c), and (B9) become

-
x 01(

-
x ) 5 2

-
c 01(

-
x ) (B12a)

(1±4 E 2
00 2 ¹ 2)

-
c 01 1 2

-
- (

-
-

-
c 01) 2 (dm /r 2 F 0 2 M 2

m)
-

c 01 5 1±2 E00

-
K c 00 (B12b)

2 E00

-
- 3

-
c 01 5

-
K 3

-
- c 00 ® 0 (B12c)

x 02(
-

x ) 5 2 c 02 (
-

x ) (B13a)

(1±4 E 2
00 1 ¹ 2) c 02 1 (dm /r 2 F 0 2 M 2

m) c 02 5 2 (1±2 E00E02 1 1±4
-

K 2 2 c 00

2 1±2 E00

-
K

-
c 01 (B13b)

-
- (

-
K 3

-
c 01) ® 0 (B13c)

The procedure of the dimensional analysis approximation is to replace the

operator of
-

c 01 in (B12b) by some scale constant, which is then fixed by

(B12c). The result is

2
-

x 01(
-
x ) 5

-
c 01(

-
x ) 5

-
K c 00 /E00 (B14)

where the free meson wave function (III 2.2a) has been used for the zeroth-

order wave function c 00. The choice
-

K 5 (0, 0, K ) (B15)

entails no loss of generality. Self-consistency of (B12) is obtained for

2
-

x 01 5
-

c 01 5 (0, 0, c 01z(x, y)) (B16)

Here, x and y are relative space coordinates. Note that
-

c 01 in (B16) depends
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only upon x and y, while
-

c 01 in (B14) also depends upon z via c 00(r). This

inconsistenciy is regarded as part of the approximation.

Following the procedure leading to (B14), the operator for c 02 in (B13b)

is replaced by a scale constant. However, (B13c) is an identity by (B15) and
(B16) and hence cannot fix this constant. Now, the left operator in (B13b)

is the same as that for the zeroth-order c 00 (I 6.10), so that the homogeneous

part of c 02 is proportional to c 00. The right side of (B13b) is also proportional

to c 00 by (B14). Therefore, the scale constant is estimated to be 4/d 2
m, the

square of the scale of c 00 in (III 2.2a). This result, together with (B14) and

(B10), the third of (B6), and (B8a), converts (B13a) and (B13b) to

2 x 02 5 c 02 5 2 4K 2 c 00 /d 2
m (B17)

It is pointed out that the dimensional analysis results (B14), (B16), and

(B17) can only give order-of-magnitude estimates of the perturbed wave

functions. The detailed depedence of these functions on x is lost in the

approximation, as noted below (B16).
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